

Jay Jacobs, Cyentia Sasha Romanosky, RAND Idris Adjerid, Virginia Tech Wade Baker, Virginia Tech

The Problem

- After 20 years, we security professionals and researchers are <u>still</u> unable to effectively measure and communicate cyber risk
- Collectively, we can't answer basic questions like:
 - Am I more secure now, relative to last year?
 - Which security controls work the best?

- In the mean time, firms are still being breached by vulnerabilities for which patches have existed for months or years
- It's a:
 - private sector <u>cyber security</u> problem
 - consumer, patient, student, and employee <u>privacy</u> problem
 - domestic, and *national security* problem

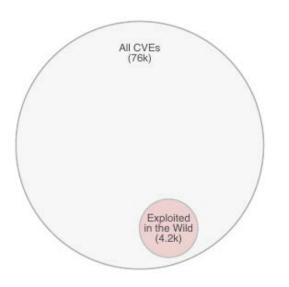
Why is it so Difficult?

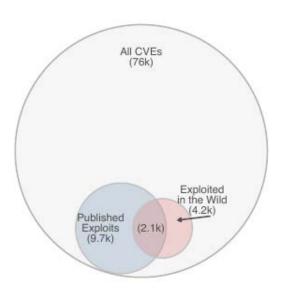
- One of the root causes is vulnerability management (VM)
 - Firms are pretty good at <u>finding</u> software vulnerabilities
 - They're just not very good at <u>fixing</u> them
- Many VM practices are based on prioritizing remediation by <u>severity</u>, e.g.:
 - DHS's directive requires agencies to patch based on high and critical severity vulns
 - PCI DSS requires credit card merchants patch vulns above a severity threshold
- As a decision rule, severity is good but doesn't incorporate information about whether the vuln is actually being exploited...
 - <u>...</u> a necessary condition before attack

@CyentiaInst



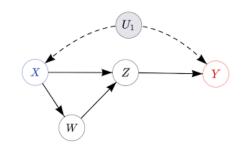
The firm's problem


- A firm may well have tens of thousands of open vulnerabilities
 - But only a small set will ever be exploited -- 5%, in fact


The firm's problem

- A strategy based on <u>severity</u> catches many exploited vulns, but is <u>very inefficient</u> because it requires patching vulns that will never be used in an attack
- The firm's problem is to patch the most number of risky vulns, as efficiently as possible

The firm's problem (again)



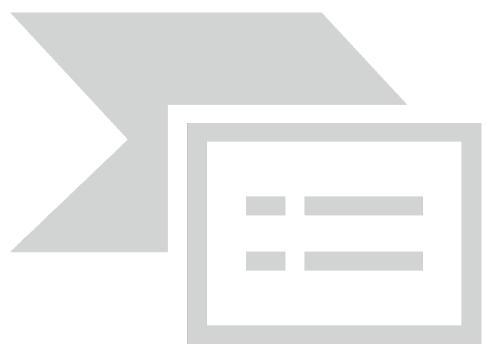
- While other research uses <u>published exploits</u> as the decision rule, it tells a similar story:
- Even if firms correctly patched all vulns with published exploits, many exploited vulns would still be missed

Inference vs Prediction

- Formally, we have a supervised learning classification problem
 - Our priority is to <u>predict</u> whether a vulnerability will be used in a real-world exploit,
 - rather than to develop or test theories about <u>why</u> vulnerabilities will be exploited
- But we <u>still</u> want to understand the model and interpret the results

Estimating Model

- Because of our class imbalance, we use gradient boosted trees, generated with extreme gradient boosting (XGBoost) (Chen and Guestrin, 2016) – which outperformed random forest and SVM models
 - We down-sampled (stratified) the majority class (exploit variable) during training (Kubat and Matwin, 2000), but tested on the full dataset
 - We evaluated models using 5-fold cross-validation
- We use F-scores (F₁, F_{0.5}, F₂) to identify optimal strategies for patching
- Again, our goal: develop a model that best predicts whether a vuln will be exploited in the wild


Data (2009-2018)

Data Type	Source(s)	Obs(n)	Features(p)
CVSS score	NIST's NVD	75,423	20
Vuln chars (products, vendor)	NIST's CPE	75,582	69
Reference lists and vuln tags	MITRE's CVE list, and URLs	75,976	31
Published exploit code	Exploit DB, Metasploit, D2 Security's Elliot Kit, etc	4,183	4
Exploits	FortiGuard, SANS, Alienvault, SecureWorks, etc	9,726	1

@CyentiaInst

Results: Full ML Model

- Our ML model (dk blue) out performs other strategies (achieves 4.1k vulns at F₁)
- We also consider approaches that favor efficiency and coverage

Next Steps

- This research isn't just about showing how ML outperforms simple heuristics
- It's about using *new* data, in *new* ways, in order to solve a chronic problem, and <u>fundamentally change the way vulnerability management is performed</u>
- That's a bold claim, but we believe the field is drastically in need of better solutions
- But we're not done!
- This approach is nice, but it's not very usable
- We're currently working to develop a threat scoring system that will be:
 - <u>Transparent</u>: both the algorithms and scoring
 - <u>Freely available</u>: possibly as an extension to CVSS, or a standalone calculator accessible through an API
- Stay tuned for BlackHat, 2019

